Macam-macam sistem bilangan

Sistem bilangan biner atau sistem bilangan basis dua adalah sebuah sistem penulisan angka dengan menggunakan dua simbol yaitu 0 dan 1. Sistem bilangan biner modern ditemukan oleh Gottfried Wilhelm Leibniz pada abad ke-17. Sistem bilangan ini merupakan dasar dari semua sistem bilangan berbasis digital. Dari sistem biner, kita dapat mengkonversinya ke sistem bilangan Oktal atau Hexadesimal. Sistem ini juga dapat kita sebut dengan istilah bit, atau Binary Digit. Pengelompokan biner dalam komputer selalu berjumlah 8, dengan istilah 1 Byte/bita. Dalam istilah komputer, 1 Byte = 8 bit. Kode-kode rancang bangun komputer, seperti ASCII, American Standard Code for Information Interchange menggunakan sistem peng-kode-an 1 Byte.

20=1
21=2
22=4
23=8
24=16
25=32
26=64
dst

Perhitungan

Desimal

Biner (8 bit)

0 0000 0000
1 0000 0001
2 0000 0010
3 0000 0011
4 0000 0100
5 0000 0101
6 0000 0110
7 0000 0111
8 0000 1000
9 0000 1001
10 0000 1010
11 0000 1011
12 0000 1100
13 0000 1101
14 0000 1110
15 0000 1111
16 0001 0000

Perhitungan dalam biner mirip dengan menghitung dalam sistem bilangan lain. Dimulai dengan angka pertama, dan angka selanjutnya. Dalam sistem bilangan desimal, perhitungan mnggunakan angka 0 hingga 9, sedangkan dalam biner hanya menggunakan angka 0 dan 1.

contoh: mengubah bilangan desimal menjadi biner

desimal = 10.

berdasarkan referensi diatas yang mendekati bilangan 10 adalah 8 (23), selanjutnya hasil pengurangan 10-8 = 2 (21). sehingga dapat dijabarkan seperti berikut

10 = (1 x 23) + (0 x 22) + (1 x 21) + (0 x 20).

dari perhitungan di atas bilangan biner dari 10 adalah 1010

dapat juga dengan cara lain yaitu 10 : 2 = 5 sisa 0 (0 akan menjadi angka terakhir dalam bilangan biner), 5(hasil pembagian pertama) : 2 = 2 sisa 1 (1 akan menjadi angka kedua terakhir dalam bilangan biner), 2(hasil pembagian kedua): 2 = 1 sisa 0(0 akan menjadi angka ketiga terakhir dalam bilangan biner), 1 (hasil pembagian ketiga): 2 = 0 sisa 1 (0 akan menjadi angka pertama dalam bilangan biner) karena hasil bagi sudah 0 atau habis, sehingga bilangan biner dari 10 = 1010

atau dengan cara yang singkat 10:2=5(0),5:2=2(1),2:2=1(0),1:2=0(1)sisa hasil bagi dibaca dari belakang menjadi 1010

Bilangan biner bertanda

// Metode Sign-and-magnitude

8 bit signed magnitude

Binary

Signed

Unsigned

00000000

+0

0

00000001

1

1

01111111

127

127

10000000

-0

128

10000001

-1

129

11111111

-127

255

Untuk menyatakan tanda bilangan (positif atau negatif), dapat digunakan salah satu bit yang ada untuk menyatakan tanda tersebut. Bit tersebut (biasanya bit yang pertama atau most significant bit) diset bernilai 0 untuk bilangan positif, dan 1 untuk bilangan negatif. Bit-bit yang lain menyatakan magnitude atau nilai mutlak dari bilangan. Jadi di dalam satu byte (8-bit), satu bit digunakan sebagai tanda, dan 7 bit sisanya sebagai magnitude yang nilainya bisa berisi mulai dari 0000000 (0) sampai 1111111 (127). Cara ini dapat digunakan untuk merepresentasikan bilangan dari −12710 sampai +12710. Konsekuensi dari metode ini adalah: akan ada dua cara untuk menyatakan nol, yaitu 00000000 (0) dan 10000000 ([-0|−0]). Komputer generasi awal (misalnya IBM 7090) menggunakan metode ini. Sign-and-magnitude adalah cara yang banyak dipakai untuk merepresentasikan significand di dalam bilangan floating point.

Komplemen satu (Ones’ complement)

8 bit ones’ complement

Binary value

Ones’ complement interpretation

Unsigned interpretation

00000000

+0

0

00000001

1

1

01111101

125

125

01111110

126

126

01111111

127

127

10000000

-127

128

10000001

-126

129

10000010

-125

130

11111110

-1

254

11111111

-0

255

Sistem yang dikenal dengan nama komplemen satu (ones’ complement) juga dapat digunakan untuk merepresentasikan bilangan negatif. Bentuk komplemen satu untuk bilangan biner negatif diperoleh dengan cara membalik seluruh bit dari bilangan biner positifnya. Bit yang bernilai 0 dibalik menjadi 1, dan bit yang bernilai 1 dibalik menjadi 0. Seperti pada metode sign-and-magnitude, di metode komplemen satu ini ada dua cara merepresentasikan bilangan nol, yaitu : 00000000 (+0) dan 11111111 ([-0|−0]).

Contoh, bentuk komplemen satu dari 00101011 (43) adalah 11010100 (−43). Jangkauan dari bilangan bertanda dengan komplemen satu adalah -(2N-1-1) sampai (2N-1-1) dan +/-0. Untuk sistem 8-bit (byte) jangkauannya adalah -12710 sampai +12710 dengan nol bisa berbentuk 00000000 (+0) atau 11111111 (-0).

Metode komplemen satu ini banyak dipakai di komputer generasi lama, seperti PDP-1, CDC 160A dan UNIVAC 1100/2200 series.

Komplemen dua (Two’s complement)

8 bit two’s complement

Binary value

Two’s complement interpretation

Unsigned interpretation

00000000

0

0

00000001

1

1

01111110

126

126

01111111

127

127

10000000

-128

128

10000001

-127

129

10000010

-126

130

11111110

-2

254

11111111

-1

255

Di dalam metode komplemen dua, bilangan negatif direpresentasikan dengan cara menambahkan satu pada bentuk komplemen satu dari suatu bilangan positif. Di dalam metode komplemen dua, hanya ada satu bilangan nol (00000000).

Misalnya, bentuk komplemen satu dari 00101011 (43) adalah 11010100 (−43). Bentuk komplemen duanya adalah: 11010100 + 1 = 11010101.

Oktal

  • Oktal atau sistem bilangan basis 8 adalah sebuah sistem bilangan berbasis delapan. Simbol yang digunakan pada sistem ini adalah 0,1,2,3,4,5,6,7. Konversi Sistem Bilangan Oktal berasal dari Sistem bilangan biner yang dikelompokkan tiap tiga bit biner dari ujung paling kanan (LSB atau Least Significant Bit).

Biner

Oktal

000 000 00
000 001 01
000 010 02
000 011 03
000 100 04
000 101 05
000 110 06
000 111 07
001 000 10
001 001 11
001 010 12
001 011 13
001 100 14
001 101 15
001 110 16
001 111 17

Format bilangan komputer

Didalam dunia komputer kita mengenal empat jenis bilangan, yaitu bilang biner, oktal, desimal dan hexadesimal. Bilangan biner atau binary digit (bit) adalah bilangan yang terdiri dari 1 dan 0. Bilangan oktal terdiri dari 0,1,2,3,4,5,6 dan 7. Sedangkan bilangan desimal terdiri dari 0,1,2,3,4,5,6,7,8 dan 9. Dan bilangan hexadesimal terdiri dari 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E dan F.

Biner

Oktal

Desimal

Hexadesimal

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F
Sistem bilangan desimal

Sistem bilangan desimal adalah sistem bilangan yang menggunakan 10 macam angka dari 0,1, sampai 9. Setelah angka 9, angka berikutnya adalah 1 0, 1 1, dan seterusnya (posisi di angka 9 diganti dengan angka 0, 1, 2, .. 9 lagi, tetapi angka di depannya dinaikkan menjadi 1). Sistem bilangan desimal sering dikenal sebagai sistem bilangan berbasis 10, karena tiap angka desimal menggunakan basis (radix) 10, seperti yang terlihat dalam contoh berikut:

angka desimal 123 = 1*102 + 2*101 + 3*100

Berikut adalah tabel yang menampilkan sistem angka desimal (basis 10), sistem bilangan biner (basis 2), sistem bilangan/ angka oktal (basis 8), dan sistem angka heksadesimal (basis 16) yang merupakan dasar pengetahuan untuk mempelajari komputer digital. Bilangan oktal dibentuk dari bilangan biner-nya dengan mengelompokkan tiap 3 bit dari ujung kanan (LSB). Sementara bilangan heksadesimal juga dapat dibentuk dengan mudah dari angka biner-nya dengan mengelompokkan tiap 4 bit dari ujung kanan.

Desimal

Biner (8 bit)

Oktal

Heksadesimal

0 0000 0000 000 00
1 0000 0001 001 01
2 0000 0010 002 02
3 0000 0011 003 03
4 0000 0100 004 04
5 0000 0101 005 05
6 0000 0110 006 06
7 0000 0111 007 07
8 0000 1000 010 08
9 0000 1001 011 09
10 0000 1010 012 0A
11 0000 1011 013 0B
12 0000 1100 014 0C
13 0000 1101 015 0D
14 0000 1110 016 0E
15 0000 1111 017 0F
16 0001 0000 020 10

// Konversi Antar Basis Bilangan

Sudah dikenal, dalam bahasa komputer terdapat empat basis bilangan. Keempat bilangan itu adalah biner, oktal, desimal dan hexadesimal. Keempat bilangan itu saling berkaitan satu sama lain. Rumus atau cara mencarinya cukup mudah untuk dipelajari. Konversi dari desimal ke non-desimal, hanya mencari sisa pembagiannya saja. Dan konversi dari non-desimal ke desimal adalah: 1. Mengalikan bilangan dengan angka basis bilangannya. 2. Setiap angka yang bernilai satuan, dihitung dengan pangkat NOL (0). Digit puluhan, dengan pangkat SATU (1), begitu pula dengan digit ratusan, ribuan, dan seterusnya. Nilai pangkat selalu bertambah satu point.

Konversi Biner ke Oktal

Metode konversinya hampir sama. Cuma, karena pengelompokkannya berdasarkan 3 bit saja, maka hasilnya adalah: 1010 (2) = …… (8) Solusi: Ambil tiga digit terbelakang dahulu. 010(2) = 2(8) Sedangkan sisa satu digit terakhir, tetap bernilai 1. Hasil akhirnya adalah: 12.

Konversi Biner ke Hexadesimal

Metode konversinya hampir sama dengan Biner ke Oktal. Namun pengelompokkannya sejumlah 4 bit. Empat kelompok bit paling kanan adalah posisi satuan, empat bit kedua dari kanan adalah puluhan, dan seterusnya. Contoh: 11100011(2) = …… (16) Solusi: kelompok bit paling kanan: 0011 = 3 kelompok bit berikutnya: 1110 = E Hasil konversinya adalah: E3(16)

Konversi Biner ke Desimal

Cara atau metode ini sedikit berbeda. Contoh: 10110(2) = ……(10) diuraikan menjadi: (1×24)+(0×23)+(1×22)+(1×21)+(0×20) = 16 + 0 + 4 + 2 + 0 = 22 Angka 2 dalam perkalian adalah basis biner-nya. Sedangkan pangkat yang berurut, menandakan pangkat 0 adalah satuan, pangkat 1 adalah puluhan, dan seterusnya.

Konversi Oktal ke Biner

Sebenarnya, untuk konversi basis ini, haruslah sedikit menghafal tabel konversi utama yang berada di halaman atas. Namun dapat dipelajari dengan mudah. Dan ambillah tiga biner saja. Contoh: 523(8) = …… (2) Solusi: Dengan melihat tabel utama, didapat hasilnya adalah: 3 = 011 2 = 010 5 = 101 Pengurutan bilangan masih berdasarkan posisi satuan, puluhan dan ratusan. Hasil: 101010011(2)

Konversi Hexadesimal ke Biner

Metode dan caranya hampir serupa dengan konversi Oktal ke Biner. Hanya pengelompokkannya sebanyak empat bit. Seperti pada tabel utama. Contoh: 2A(16) = ……(2) Solusi: A = 1010, 2 = 0010 Hasil: 101010(2). Dengan catatan, angka “0″ paling depan tidak usah ditulis.

Konversi Desimal ke Hexadesimal

Ada cara dan metodenya, namun bagi sebagian orang masih terbilang membingungkan. Cara termudah adalah, konversikan dahulu dari desimal ke biner, lalu konversikan dari biner ke hexadesimal. Contoh: 75(10) = ……(16) Solusi: 75 dibagi 16 = 4 sisa 11 (11 = B). Dan hasil konversinya: 4B(16)

Konversi Hexadesimal ke Desimal

Caranya hampir sama seperti konversi dari biner ke desimal. Namun, bilangan basisnya adalah 16. Contoh: 4B(16) = ……(10) Solusi: Dengan patokan pada tabel utama, B dapat ditulis dengan nilai “11“. (4×161)+(11×160) = 64 + 11 = 75(10)

Konversi Desimal ke Oktal

Caranya hampir sama dengan konversi desimal ke hexadesimal. Contoh: 25(10) = ……(8) Solusi: 25 dibagi 8 = 3 sisa 1. Hasilnya dapat ditulis: 31(8)

25 : 8 sisa 1 3 ——– 3 hasilnya adalah 31

Konversi Oktal ke Desimal

Metodenya hampir sama dengan konversi hexadesimal ke desimal. Dapat diikuti dengan contoh di bawah ini: 31(8) = ……(10) Solusi: (3×81)+(1×80) = 24 + 1 = 25(10)

Format bilangan komputer

Didalam dunia komputer kita mengenal empat jenis bilangan, yaitu bilang biner, oktal, desimal dan hexadesimal. Bilangan biner atau binary digit (bit) adalah bilangan yang terdiri dari 1 dan 0. Bilangan oktal terdiri dari 0,1,2,3,4,5,6 dan 7. Sedangkan bilangan desimal terdiri dari 0,1,2,3,4,5,6,7,8 dan 9. Dan bilangan hexadesimal terdiri dari 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E dan F.

Biner

Oktal

Desimal

Hexadesimal

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F

Heksadesimal

Heksadesimal atau sistem bilangan basis 16 adalah sebuah sistem bilangan yang menggunakan 16 simbol. Berbeda dengan sistem bilangan desimal, simbol yang digunakan dari sistem ini adalah angka 0 sampai 9, ditambah dengan 6 simbol lainnya dengan menggunakan huruf A hingga F. Nilai desimal yang setara dengan setiap simbol tersebut diperlihatkan pada tabel berikut:

0hex

=

0dec

=

0oct

0

0

0

0

1hex

=

1dec

=

1oct

0

0

0

1

2hex

=

2dec

=

2oct

0

0

1

0

3hex

=

3dec

=

3oct

0

0

1

1

4hex

=

4dec

=

4oct

0

1

0

0

5hex

=

5dec

=

5oct

0

1

0

1

6hex

=

6dec

=

6oct

0

1

1

0

7hex

=

7dec

=

7oct

0

1

1

1

8hex

=

8dec

=

10oct

1

0

0

0

9hex

=

9dec

=

11oct

1

0

0

1

Ahex

=

10dec

=

12oct

1

0

1

0

Bhex

=

11dec

=

13oct

1

0

1

1

Chex

=

12dec

=

14oct

1

1

0

0

Dhex

=

13dec

=

15oct

1

1

0

1

Ehex

=

14dec

=

16oct

1

1

1

0

Fhex

=

15dec

=

17oct

1

1

1

1

Konversi

Konversi dari heksadesimal ke desimal

Untuk mengkonversinya ke dalam bilangan desimal, dapat menggunakan formula berikut:

Dari bilangan heksadesimal H yang merupakan untai digit hnhn − 1h2h1h0, jika dikonversikan menjadi bilangan desimal D, maka:

Sebagai contoh, bilangan heksa 10E yang akan dikonversi ke dalam bilangan desimal:

  • Digit-digit 10E dapat dipisahkan dan mengganti bilangan A sampai F (jika terdapat) menjadi bilangan desimal padanannya. Pada contoh ini, 10E diubah menjadi barisan: 1,0,14 (E = 14 dalam basis 10)
  • Mengalikan dari tiap digit terhadap nilai tempatnya.

= 256 + 0 + 14

= 270

Dengan demikian, bilangan 10E heksadesimal sama dengan bilangan desimal 270.

Konversi dari desimal ke heksadesimal

Sedangkan untuk mengkonversi sistem desimal ke heksadesimal caranya sebagai berikut (kita gunakan contoh sebelumnya, yaitu angka desimal 270):

 270 dibagi 16 hasil:  16   sisa 14  ( = E )
  16 dibagi 16 hasil:   1   sisa  0  ( = 0 )
   1 dibagi 16 hasil:   0   sisa  1  ( = 1 )

Dari perhitungan di atas, nilai sisa yang diperoleh (jika ditulis dari bawah ke atas) akan menghasilkan : 10E yang merupakan hasil konversi dari bilangan desimal ke heksadesimal itu.

Sistem bilangan biner atau sistem bilangan basis dua adalah sebuah sistem penulisan angka dengan menggunakan dua simbol yaitu 0 dan 1. Sistem bilangan biner modern ditemukan oleh Gottfried Wilhelm Leibniz pada abad ke-17. Sistem bilangan ini merupakan dasar dari semua sistem bilangan berbasis digital. Dari sistem biner, kita dapat mengkonversinya ke sistem bilangan Oktal atau Hexadesimal. Sistem ini juga dapat kita sebut dengan istilah bit, atau Binary Digit. Pengelompokan biner dalam komputer selalu berjumlah 8, dengan istilah 1 Byte/bita. Dalam istilah komputer, 1 Byte = 8 bit. Kode-kode rancang bangun komputer, seperti ASCII, American Standard Code for Information Interchange menggunakan sistem peng-kode-an 1 Byte.

20=1
21=2
22=4
23=8
24=16
25=32
26=64
dst

Perhitungan

Desimal

Biner (8 bit)

0 0000 0000
1 0000 0001
2 0000 0010
3 0000 0011
4 0000 0100
5 0000 0101
6 0000 0110
7 0000 0111
8 0000 1000
9 0000 1001
10 0000 1010
11 0000 1011
12 0000 1100
13 0000 1101
14 0000 1110
15 0000 1111
16 0001 0000

Perhitungan dalam biner mirip dengan menghitung dalam sistem bilangan lain. Dimulai dengan angka pertama, dan angka selanjutnya. Dalam sistem bilangan desimal, perhitungan mnggunakan angka 0 hingga 9, sedangkan dalam biner hanya menggunakan angka 0 dan 1.

contoh: mengubah bilangan desimal menjadi biner

desimal = 10.

berdasarkan referensi diatas yang mendekati bilangan 10 adalah 8 (23), selanjutnya hasil pengurangan 10-8 = 2 (21). sehingga dapat dijabarkan seperti berikut

10 = (1 x 23) + (0 x 22) + (1 x 21) + (0 x 20).

dari perhitungan di atas bilangan biner dari 10 adalah 1010

dapat juga dengan cara lain yaitu 10 : 2 = 5 sisa 0 (0 akan menjadi angka terakhir dalam bilangan biner), 5(hasil pembagian pertama) : 2 = 2 sisa 1 (1 akan menjadi angka kedua terakhir dalam bilangan biner), 2(hasil pembagian kedua): 2 = 1 sisa 0(0 akan menjadi angka ketiga terakhir dalam bilangan biner), 1 (hasil pembagian ketiga): 2 = 0 sisa 1 (0 akan menjadi angka pertama dalam bilangan biner) karena hasil bagi sudah 0 atau habis, sehingga bilangan biner dari 10 = 1010

atau dengan cara yang singkat 10:2=5(0),5:2=2(1),2:2=1(0),1:2=0(1)sisa hasil bagi dibaca dari belakang menjadi 1010

Bilangan biner bertanda

// Metode Sign-and-magnitude

8 bit signed magnitude

Binary

Signed

Unsigned

00000000

+0

0

00000001

1

1

01111111

127

127

10000000

-0

128

10000001

-1

129

11111111

-127

255

Untuk menyatakan tanda bilangan (positif atau negatif), dapat digunakan salah satu bit yang ada untuk menyatakan tanda tersebut. Bit tersebut (biasanya bit yang pertama atau most significant bit) diset bernilai 0 untuk bilangan positif, dan 1 untuk bilangan negatif. Bit-bit yang lain menyatakan magnitude atau nilai mutlak dari bilangan. Jadi di dalam satu byte (8-bit), satu bit digunakan sebagai tanda, dan 7 bit sisanya sebagai magnitude yang nilainya bisa berisi mulai dari 0000000 (0) sampai 1111111 (127). Cara ini dapat digunakan untuk merepresentasikan bilangan dari −12710 sampai +12710. Konsekuensi dari metode ini adalah: akan ada dua cara untuk menyatakan nol, yaitu 00000000 (0) dan 10000000 ([-0|−0]). Komputer generasi awal (misalnya IBM 7090) menggunakan metode ini. Sign-and-magnitude adalah cara yang banyak dipakai untuk merepresentasikan significand di dalam bilangan floating point.

Komplemen satu (Ones’ complement)

8 bit ones’ complement

Binary value

Ones’ complement interpretation

Unsigned interpretation

00000000

+0

0

00000001

1

1

01111101

125

125

01111110

126

126

01111111

127

127

10000000

-127

128

10000001

-126

129

10000010

-125

130

11111110

-1

254

11111111

-0

255

Sistem yang dikenal dengan nama komplemen satu (ones’ complement) juga dapat digunakan untuk merepresentasikan bilangan negatif. Bentuk komplemen satu untuk bilangan biner negatif diperoleh dengan cara membalik seluruh bit dari bilangan biner positifnya. Bit yang bernilai 0 dibalik menjadi 1, dan bit yang bernilai 1 dibalik menjadi 0. Seperti pada metode sign-and-magnitude, di metode komplemen satu ini ada dua cara merepresentasikan bilangan nol, yaitu : 00000000 (+0) dan 11111111 ([-0|−0]).

Contoh, bentuk komplemen satu dari 00101011 (43) adalah 11010100 (−43). Jangkauan dari bilangan bertanda dengan komplemen satu adalah -(2N-1-1) sampai (2N-1-1) dan +/-0. Untuk sistem 8-bit (byte) jangkauannya adalah -12710 sampai +12710 dengan nol bisa berbentuk 00000000 (+0) atau 11111111 (-0).

Metode komplemen satu ini banyak dipakai di komputer generasi lama, seperti PDP-1, CDC 160A dan UNIVAC 1100/2200 series.

Komplemen dua (Two’s complement)

8 bit two’s complement

Binary value

Two’s complement interpretation

Unsigned interpretation

00000000

0

0

00000001

1

1

01111110

126

126

01111111

127

127

10000000

-128

128

10000001

-127

129

10000010

-126

130

11111110

-2

254

11111111

-1

255

Di dalam metode komplemen dua, bilangan negatif direpresentasikan dengan cara menambahkan satu pada bentuk komplemen satu dari suatu bilangan positif. Di dalam metode komplemen dua, hanya ada satu bilangan nol (00000000).

Misalnya, bentuk komplemen satu dari 00101011 (43) adalah 11010100 (−43). Bentuk komplemen duanya adalah: 11010100 + 1 = 11010101.

Oktal

  • Oktal atau sistem bilangan basis 8 adalah sebuah sistem bilangan berbasis delapan. Simbol yang digunakan pada sistem ini adalah 0,1,2,3,4,5,6,7. Konversi Sistem Bilangan Oktal berasal dari Sistem bilangan biner yang dikelompokkan tiap tiga bit biner dari ujung paling kanan (LSB atau Least Significant Bit).

Biner

Oktal

000 000 00
000 001 01
000 010 02
000 011 03
000 100 04
000 101 05
000 110 06
000 111 07
001 000 10
001 001 11
001 010 12
001 011 13
001 100 14
001 101 15
001 110 16
001 111 17

Format bilangan komputer

Didalam dunia komputer kita mengenal empat jenis bilangan, yaitu bilang biner, oktal, desimal dan hexadesimal. Bilangan biner atau binary digit (bit) adalah bilangan yang terdiri dari 1 dan 0. Bilangan oktal terdiri dari 0,1,2,3,4,5,6 dan 7. Sedangkan bilangan desimal terdiri dari 0,1,2,3,4,5,6,7,8 dan 9. Dan bilangan hexadesimal terdiri dari 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E dan F.

Biner

Oktal

Desimal

Hexadesimal

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F
Sistem bilangan desimal

Sistem bilangan desimal adalah sistem bilangan yang menggunakan 10 macam angka dari 0,1, sampai 9. Setelah angka 9, angka berikutnya adalah 1 0, 1 1, dan seterusnya (posisi di angka 9 diganti dengan angka 0, 1, 2, .. 9 lagi, tetapi angka di depannya dinaikkan menjadi 1). Sistem bilangan desimal sering dikenal sebagai sistem bilangan berbasis 10, karena tiap angka desimal menggunakan basis (radix) 10, seperti yang terlihat dalam contoh berikut:

angka desimal 123 = 1*102 + 2*101 + 3*100

Berikut adalah tabel yang menampilkan sistem angka desimal (basis 10), sistem bilangan biner (basis 2), sistem bilangan/ angka oktal (basis 8), dan sistem angka heksadesimal (basis 16) yang merupakan dasar pengetahuan untuk mempelajari komputer digital. Bilangan oktal dibentuk dari bilangan biner-nya dengan mengelompokkan tiap 3 bit dari ujung kanan (LSB). Sementara bilangan heksadesimal juga dapat dibentuk dengan mudah dari angka biner-nya dengan mengelompokkan tiap 4 bit dari ujung kanan.

Desimal

Biner (8 bit)

Oktal

Heksadesimal

0 0000 0000 000 00
1 0000 0001 001 01
2 0000 0010 002 02
3 0000 0011 003 03
4 0000 0100 004 04
5 0000 0101 005 05
6 0000 0110 006 06
7 0000 0111 007 07
8 0000 1000 010 08
9 0000 1001 011 09
10 0000 1010 012 0A
11 0000 1011 013 0B
12 0000 1100 014 0C
13 0000 1101 015 0D
14 0000 1110 016 0E
15 0000 1111 017 0F
16 0001 0000 020 10

// Konversi Antar Basis Bilangan

Sudah dikenal, dalam bahasa komputer terdapat empat basis bilangan. Keempat bilangan itu adalah biner, oktal, desimal dan hexadesimal. Keempat bilangan itu saling berkaitan satu sama lain. Rumus atau cara mencarinya cukup mudah untuk dipelajari. Konversi dari desimal ke non-desimal, hanya mencari sisa pembagiannya saja. Dan konversi dari non-desimal ke desimal adalah: 1. Mengalikan bilangan dengan angka basis bilangannya. 2. Setiap angka yang bernilai satuan, dihitung dengan pangkat NOL (0). Digit puluhan, dengan pangkat SATU (1), begitu pula dengan digit ratusan, ribuan, dan seterusnya. Nilai pangkat selalu bertambah satu point.

Konversi Biner ke Oktal

Metode konversinya hampir sama. Cuma, karena pengelompokkannya berdasarkan 3 bit saja, maka hasilnya adalah: 1010 (2) = …… (8) Solusi: Ambil tiga digit terbelakang dahulu. 010(2) = 2(8) Sedangkan sisa satu digit terakhir, tetap bernilai 1. Hasil akhirnya adalah: 12.

Konversi Biner ke Hexadesimal

Metode konversinya hampir sama dengan Biner ke Oktal. Namun pengelompokkannya sejumlah 4 bit. Empat kelompok bit paling kanan adalah posisi satuan, empat bit kedua dari kanan adalah puluhan, dan seterusnya. Contoh: 11100011(2) = …… (16) Solusi: kelompok bit paling kanan: 0011 = 3 kelompok bit berikutnya: 1110 = E Hasil konversinya adalah: E3(16)

Konversi Biner ke Desimal

Cara atau metode ini sedikit berbeda. Contoh: 10110(2) = ……(10) diuraikan menjadi: (1×24)+(0×23)+(1×22)+(1×21)+(0×20) = 16 + 0 + 4 + 2 + 0 = 22 Angka 2 dalam perkalian adalah basis biner-nya. Sedangkan pangkat yang berurut, menandakan pangkat 0 adalah satuan, pangkat 1 adalah puluhan, dan seterusnya.

Konversi Oktal ke Biner

Sebenarnya, untuk konversi basis ini, haruslah sedikit menghafal tabel konversi utama yang berada di halaman atas. Namun dapat dipelajari dengan mudah. Dan ambillah tiga biner saja. Contoh: 523(8) = …… (2) Solusi: Dengan melihat tabel utama, didapat hasilnya adalah: 3 = 011 2 = 010 5 = 101 Pengurutan bilangan masih berdasarkan posisi satuan, puluhan dan ratusan. Hasil: 101010011(2)

Konversi Hexadesimal ke Biner

Metode dan caranya hampir serupa dengan konversi Oktal ke Biner. Hanya pengelompokkannya sebanyak empat bit. Seperti pada tabel utama. Contoh: 2A(16) = ……(2) Solusi: A = 1010, 2 = 0010 Hasil: 101010(2). Dengan catatan, angka “0″ paling depan tidak usah ditulis.

Konversi Desimal ke Hexadesimal

Ada cara dan metodenya, namun bagi sebagian orang masih terbilang membingungkan. Cara termudah adalah, konversikan dahulu dari desimal ke biner, lalu konversikan dari biner ke hexadesimal. Contoh: 75(10) = ……(16) Solusi: 75 dibagi 16 = 4 sisa 11 (11 = B). Dan hasil konversinya: 4B(16)

Konversi Hexadesimal ke Desimal

Caranya hampir sama seperti konversi dari biner ke desimal. Namun, bilangan basisnya adalah 16. Contoh: 4B(16) = ……(10) Solusi: Dengan patokan pada tabel utama, B dapat ditulis dengan nilai “11“. (4×161)+(11×160) = 64 + 11 = 75(10)

Konversi Desimal ke Oktal

Caranya hampir sama dengan konversi desimal ke hexadesimal. Contoh: 25(10) = ……(8) Solusi: 25 dibagi 8 = 3 sisa 1. Hasilnya dapat ditulis: 31(8)

25 : 8 sisa 1 3 ——– 3 hasilnya adalah 31

Konversi Oktal ke Desimal

Metodenya hampir sama dengan konversi hexadesimal ke desimal. Dapat diikuti dengan contoh di bawah ini: 31(8) = ……(10) Solusi: (3×81)+(1×80) = 24 + 1 = 25(10)

Format bilangan komputer

Didalam dunia komputer kita mengenal empat jenis bilangan, yaitu bilang biner, oktal, desimal dan hexadesimal. Bilangan biner atau binary digit (bit) adalah bilangan yang terdiri dari 1 dan 0. Bilangan oktal terdiri dari 0,1,2,3,4,5,6 dan 7. Sedangkan bilangan desimal terdiri dari 0,1,2,3,4,5,6,7,8 dan 9. Dan bilangan hexadesimal terdiri dari 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E dan F.

Biner

Oktal

Desimal

Hexadesimal

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F

Heksadesimal

Heksadesimal atau sistem bilangan basis 16 adalah sebuah sistem bilangan yang menggunakan 16 simbol. Berbeda dengan sistem bilangan desimal, simbol yang digunakan dari sistem ini adalah angka 0 sampai 9, ditambah dengan 6 simbol lainnya dengan menggunakan huruf A hingga F. Nilai desimal yang setara dengan setiap simbol tersebut diperlihatkan pada tabel berikut:

0hex

=

0dec

=

0oct

0

0

0

0

1hex

=

1dec

=

1oct

0

0

0

1

2hex

=

2dec

=

2oct

0

0

1

0

3hex

=

3dec

=

3oct

0

0

1

1

4hex

=

4dec

=

4oct

0

1

0

0

5hex

=

5dec

=

5oct

0

1

0

1

6hex

=

6dec

=

6oct

0

1

1

0

7hex

=

7dec

=

7oct

0

1

1

1

8hex

=

8dec

=

10oct

1

0

0

0

9hex

=

9dec

=

11oct

1

0

0

1

Ahex

=

10dec

=

12oct

1

0

1

0

Bhex

=

11dec

=

13oct

1

0

1

1

Chex

=

12dec

=

14oct

1

1

0

0

Dhex

=

13dec

=

15oct

1

1

0

1

Ehex

=

14dec

=

16oct

1

1

1

0

Fhex

=

15dec

=

17oct

1

1

1

1

Konversi

Konversi dari heksadesimal ke desimal

Untuk mengkonversinya ke dalam bilangan desimal, dapat menggunakan formula berikut:

Dari bilangan heksadesimal H yang merupakan untai digit hnhn − 1h2h1h0, jika dikonversikan menjadi bilangan desimal D, maka:

Sebagai contoh, bilangan heksa 10E yang akan dikonversi ke dalam bilangan desimal:

  • Digit-digit 10E dapat dipisahkan dan mengganti bilangan A sampai F (jika terdapat) menjadi bilangan desimal padanannya. Pada contoh ini, 10E diubah menjadi barisan: 1,0,14 (E = 14 dalam basis 10)
  • Mengalikan dari tiap digit terhadap nilai tempatnya.

= 256 + 0 + 14

= 270

Dengan demikian, bilangan 10E heksadesimal sama dengan bilangan desimal 270.

Konversi dari desimal ke heksadesimal

Sedangkan untuk mengkonversi sistem desimal ke heksadesimal caranya sebagai berikut (kita gunakan contoh sebelumnya, yaitu angka desimal 270):

 270 dibagi 16 hasil:  16   sisa 14  ( = E )
  16 dibagi 16 hasil:   1   sisa  0  ( = 0 )
   1 dibagi 16 hasil:   0   sisa  1  ( = 1 )

Dari perhitungan di atas, nilai sisa yang diperoleh (jika ditulis dari bawah ke atas) akan menghasilkan : 10E yang merupakan hasil konversi dari bilangan desimal ke heksadesimal itu.

VN:F [1.9.22_1171]
Rating: 0.0/10 (0 votes cast)
VN:D [1.9.22_1171]
Rating: +1 (from 1 vote)
Share

Post a Response

*
To prove you're a person (not a spam script), type the security word shown in the picture.
Anti-Spam Image